
A-R17 714 SYNTHESIS OF OPTIMAL CLOCKING SCHIEMES FOR DIGITAL 1/1l
SYSTEMS(U) UNIVERSITY OF SOUTHERN CALIFORNIA LOS
ANGELES N PARK ET AL. 64 MAY 94 CRI-95-32

LOLRSIIE RO 179 0-EL DAAG2S-80-K-9093 F/O 9/2 N

Ehhhhmhhhhhhls
smhhhhmmhhlm
mhhhhhhhhhhhhl
mhEohhEEmhhhhE

-- ,6 M

L2.
1111 * L M..

11111112511111-= 11111- IIIII.: ,

1 .

00 _

Synthesis of1
0 Optimal Clocking Schemes

-w for Digital Systems
Technical Report CRI-85-32

(DISC 84-1 - May 4 1984) ~

Nohbyung Park and Alice C. Parker

- %g 4

CO"MPUTER _RESEARCH NSTITU TE'

5, 4

4T
E

SAFR2 1987:!

* Department of Computer Science
Department of Electrical Engineering-Systems

* University of Southern California
Los Angeles, CA 90089-0781

Telephone: (213) 743-3307

* ~ s~~u=..i~tedL

.s2 A-VtO I~O,-

Synthesis of'
Optimal Clocking Schemes

for Digital Systems

Technical Report CRI-85-32
(DISC 84-1 - May 4 1984)

Nohbyung Park and Alice C. Parker

FF

i-:i 2 1987 •

lThis research was supported by Army Research Office Grant DAAG29-80-K-0083 and '_
the International Business Machines Corporation, Contract #S 956501 QLX A B22. "

f.o

UNCLASSIFIED MASTER COPY - FOR REPRODUCTION PURPOSES
SECURITY CLASSIFICATION OF THI PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT

2b. OECLASSIFICATION OWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ARO 17920.18-EL
Go. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

U of So. California IU.S. Army Research Office

6c. ADDRESS (Cliy, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Los Angeles, CA 90089-0781 P. 0. Box 12211
Research Triangle Park, NC 27709-2211

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) DAAG29-80-K-0083
U. S. Army Research Office

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM IPROJECT TASK WORK UNIT

Research Triangle Park, NC 27709-2211 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Secunry Classification)

Synthesis of Optimal Clocking Schemes for Digital Systems

12 PERSONAL AUTHOR(S)
Nohbyung Park and Alice C. Parker

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S PAGE COUNT
Technical I FROM TO May 4, 1984 63

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those
of 1heauth r(?).and sh uld not be construed as an fficial Deartment of the Army position,

17. COSATI CODES 18. SU1BJECT TERMS (Continue on reverie if necessary and identify by block number)
FIELD GROUP SUB-GROUP -.Digital Systems, Design Decisions, Control Systems,

Digital Systems Control, Microprogramming * (

'iABSTRACT (Continue on reverse if necessary and identify by block number) "'.. ,
This research examined some important problems of synthesis of digital systems. In
particular, the focus was on some specific design decisions which produce a register-
transfer hardware implementation of a digital system with near optimal speed under
certain design constraints and desired optimization goals. Consideration was given to
optimizing the speed of an already designed system by reconfiguring the interconnections
of the hardware modules. The final report gives a brief overview of high-performance
control styles of digital systems and then focus on the area of speed optimization
of digital systems with centralized controllers.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0-UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473.64 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE I
All other editions are obsolete UNCLASSIFIED

i.."'

Table of Contents

I INTRODUCTION 1
I.1 Speeding Up Digital Systems 1
1.2 Two Sequencing Levels of a Digital System 1
1.3 Overlapped Execution in Micro-level Sequencing 3
1.4 Overview of the Research 5

2 MOTIVATION AND BACKGROUND 8
2.1 The General Digital Design Optimization Problem 8
2.2 Definition of the Clocking Scheme Synthesis Task 9
2.3 Definition of Speed of Digital Systems 12
2.4 Previous Work 12

2.4.1 Related Work in Clocking Scheme Synthesis 13
2.4.2 Other Related Work 15

2.5 Motivation 16
3 THE PROBLEM FORMULATION 17

3.1 Specifying the Functioning Times of Digital Circuits 17
3.1.1 The Circuit Graph 17
3.1.2 Specifying the Propagation Delays of Modules and Circuits 19

3.2 Modeling Sequencing Behavior of Micro Cycles 20
3.2.1 The MEG - the Micro-cycle Execution Graph 20
3.2.2 The COM - the Chain of Minor Cycles 22

3.3 Sequencing Behavior of Overlapped Micro Cycles 24
3.4 Clocking Requirements of Overlapped Micro Cycles 27

4 LOOP-FREE CLOCKING SCHEME SYNTHESIS RESULTS 29
4.1 Definition of Variables 29
4.2 Execution Speed Analysis 31
4.3 Maximum Execution Speed Analysis 34
4.4 Optimal Stage Partitioning 37

4.4.1 Optimal Stage Partitioning 37K 4.4.2 An Example Stage Partitioning 43
4.4.3 Performance Comparison - k-stage vs. Single Stage 45

5 EXAMPLES ILLUSTRATING STATIC CLOCKING SCHEME SYNTHESIS 47
5.1 A Microprogrammed CPU 47
5.2 A Systolic Array A,: 51

APPENDIX ,4
I Proofs of Lemma I through Lemma 8 54

4I
i!-

orto

'N S P"c,

. ,- - -..-- .- % .. . -,- . . .- -.- ..-. ,.- .-. ..: .-.- ..-. .-.

Sii U!

List of Figures

Figure 1: Sequencing Engines of a Digital System 2
Figure 2: Examples of Micro Cycle Sequencing (Gantt Chart) 4
Figure 3: A Circuit Graph of a Microprogrammed Computer CPU 18
Figure 4: Examples of the MEG's of the Circuit Graph of Fig. 3 21

Figure 6: COM's Derived from the Results of Stage Partitioning 23
Figure 6: Examples of Micro Cycle Sequencing and Clocking 25
Figure 7: Resynchronization Overhead due to Data/resource Contention 26

Figure 8: The Number of Clock Phases vs. Resynchronization Overhead 27
Figure 9: Examples of Single-chain Clocking Sequences 28
Figure 10: Execution Time vs. Clock Period 36
Figure 11: An Example of a Weighted MEG of Figure 4 43
Figure 12: Stage Partitioning of the HP-2IMX CPU 49
Figure 13: Stage Partitioning of a Systolic Array 52
Figure 14: Stage Partitioning Result of the Systolic Array of Fig. 13 53

II

ml

.-. . ~ ~ .* % ~ * ~ ~. ~.% ."

1 INTRODUCTION

The research discussed here will examine some important problems of synthesis of

digital systems. In particular, the focus will be on some specific design decisions which

produce a register-transfer hardware implementation of a digital system with near

optimal speed under certain design constraints and desired optimization goals. We will

also consider optimizing the speed of an already designed system by reconfiguring the

interconnections of the hardware modules. The discussion which follows will start with a

brief overview of high-performance control styles of digital systems and then focus on the

area of speed optimization of digital systems with centralized controllers.

1.1 Speeding Up Digital Systems

Although there are many styles and variations of techniques for high performance

digital systems control, they can be classified as following two basic concepts:

* distributed processing under asynchronous distributed control .

e overlapped (parallel) processing under centralized control

The former class includes digital systems with multiple autonomous control sequencers

such as multi-microprocessor systems, VLSI circuits with multiple autonomous control

modules and interfaces (e.g., a UART with separate sequencers for receiver and

transmitter). The latter class includes systems or modules with only a single centralized

controller. Any system belonging to the first class can be partitioned into subsystems

and/or modules each of which can be classified under the latter class, although there are "-.'

several complex control partitioning problems which must be addressed. The overall

speed of such a distributed processing system will be determined as a function of the

speed of each partitioned subsystem and/or module. Accordingly, we will focus our

discussion on the latter case, overlapped processing under centralized control.

1.2 Two Sequencing Levels of a Digital System '.

In digital systems with two-level control structures, sequencing is carried out in two

levels, the macro and micro levels. An execution instance of a machine instruction or a

major loop of an f.s.m. (macro task) corresponds to a macro cycle and an execution

*1.;
-It

2

instance of a microinstruction or a state of an f.s.m (micro task) corresponds to a

micro cycle, which are carried out by a macro engine and a micro engine,

respectively. Most Von Neumann type computer CPU's and simple digital systems have

a two-level control structure. In most digital systems whose control structure has more

than two levels, we can also find similar levels of sequencing corresponding to the macro

and micro levels. For such a system, by properly merging levels of sequencing, we can

also partition the sequencing of the system into two levels similar to the macro and

micro levels.' Figure 1 shows an example of a microprogrammed computer CPU.

MACRO ENG INE

Kult ro inas

A A
Control Signal

nlC :1 "11 Cord

Nextro Sontra$

I I,1 : i -Address ba-PC Store 1i-SBI

Curn Int

*MICIN EINE

Figure 1: Sequencing Engines of a Digital System

Macro cycles consist of sequences of one or more micro cycles. Overlapping macro

cycles are implemented by proper partitioning of macro cycles into sequences of micro

cycles. For example, an operand needed by the current macro cycle could be fetched

during some micro cycle of the previous macro cycle and some micro cycle of the

current macro cycle may fetch the next macro cycle in advance. $
(I

IFor a nano-programmed CPU such as the Nanodata QM-, nanoinstruction cycles can be considered as
the micro c.cles , and microinstruction cycles and machine instruction cycles can be merged and considered
as the macro cycles of our classification.

)i

• , . L- , • - r , , -,. .,?sfl, : .S , .J r fhi p. a , . S, r. ' ,S -J. . . s j ,. n , n n .n , , 7 ,

3

A micro cycle consists of minor cycles. Each minor cycle reads, transforms and stores

data and/or control values from storage elements to storage elements which are used to

buffer the flow of the values between functional elements. Such buffering storage

elements are called stage latches. For the micro engine of figure 1, U-PC, P-DR1,

* u-DR2 and "Cond. Latch" can be considered to be stage latches. In general, any storage

element in the system can be a stage latch.

1.3 Overlapped Execution In Micro-level Sequencing

At the macro level, various techniques for speeding up digital systems exist. Examples

are instruction look-ahead [251, stack architectures [321 and dataflow machines [131.

However, the ultimate performance of these speed-up techniques will depend very much

on good sequencing control schemes at the micro level, since each macro-level task is

eventually implemented by micro cycles.

At the micro level, execution overlap is achieved by overlapping the execution of minor

cycles of multiple micro cycles. As shown in Figure 2-(a), simple overlap is often used in

small computer CPU's. As data path cycles overlap (b and c of Figure 2), overlap within

functional units can also be used (e.g., the pipelined multiplier of the IBM 360/91).

*Possible places where micro-level overlap can be achieved are:

1. between stages of the micro engine

2. between the micro engine and the data path

3. between the data path stages "V.

Figure 2 shows timing examples of micro cycles. Case (b) corresponds to the digital
system of Figure 1, where, for a microinstruction i, the minor cycles Iii, Ii2. Ii3 and i4

start by clocking a-PC, p-DR1, w-DR2 and *Cond. Latchm, respectively. If there is no

conflict in stage usage and no branches are executed, the maximum execution speed of a

micro engine is determined by the longest interstage propagation delay (which is the

minimal possible clock period) as in static pipelines without loops. Of course, the actual

interstage propagation times depend on the number and length of the clock phases.

41

Iij j-th minor cycle of micro cycle 1.

I11 112

II---------I ---------I
control I (branching) 121 122

flow I-------- I -------- I
131 132

- - -- - -- - ------ I -------- i
---. > time

(a) Conventional 2-stage scheme vith 2-phase clock

contrul I111 112 113 114

flow I I---l-...t-I

(branching) 121 122 123 124
4I-....l---l-I-... I.

131 132 133 134

- - - - - - -e---- > t
(b) 4-stage scheme vith 2-stage data path (needs 4-phase clock)

control I 111 112 113 114 115
flow I I----I ---I ----I--II

(bruching) 121 122 123 124 125

131 132 133 134 135

--------------- ------------ > time
(c) S-stage scheme with 3-stage data path (seeds 5-phase clock)

Figure 2: Examples of Micro Cycle Sequencing (Gantt Chart)

As shown in Figure 2, a branch delays fetch of the next micro cycle until the earliest

retch clock phase after the completion of the branch. Accordingly. the time delay due to

a branch is a function of the execution time of the branch and the clock period. In other

words, overall performance of the micro engine also depends on the sequence of micro

cycles to be executed.

%e %

Ire..
I "a- %. q m~ , . %- -% %- - - % % % . , . . . - . " ,.

,: _ ; .. . :, : , ;.*. -*: . : ,: : - - . ; - - -: . - -.-.-.

5

Resource conflict and data dependency are other factors reducing the advantage of

execution overlap. For example, two microinstructions, Ii and li+ 1, are executed

consecutively and each has three microoperations (data path cycles), as follows:

Ii 1 i+1
Ill: C <-- MDR NEXT Ii+1,1: C <-- D*2 NEXT
Ii2: A <-- B * C NEXT Ii+1,2: C <-- C + 2 NEXT

Ii3: A <-- A*2 Ii+1,3: E <-- C * D

I+,1 has a data-dependency relation withi i2 []. It also has a resource conflict

(assuming only one multiplier) with Ii3* Thus li+l,1 cannot start execution until all the

data path cycles of Ii complete. These examples can also be found in pipelines with loops

[27]. Forbidden latencies of a pipeline are determined by resource conflicts between

tasks and loops are major contributors to them. These problems slow down the

execution speed as well as increase the complexity of the control circuitry. Similar

problems arise in various levels of most digital designs [36, 231. The higher the level, the

harder the analysis and the higher the control cost. At the micro sequencing level, these

problems can be analyzed in a formal way using a graph theoretic, algebraic

methodology, which will be proposed by this research proposal. .7

1.4 Overview of the Research

In this technical report, we consider speeding up digital systems with centralized

control at the micro level. The main objective of the research is to achieve maximal

performance increase with minimal hardware cost and design effort.

Among the most costly and time consuming tasks at the early stages of data path

design are module selection and allocation, which select functional and storage elements

and assign functions and values to them. Also, during or after the module selection and

allocation phases, control is synthesized, involving the synthesis of either a

microprogrammed or a hardwired sequential machine. When near optimal design is

required, all these tasks are computationally intractable (we will discuss this in Section

2.1). Furthermore, once all these tasks are completed, any non-trivial change in either

control flow or data flow may require almost the same effort as the initial design.

Naturally, we can think of the following two fundamental questions:

6U

1. During the module selection and allocation phases of the data path design
(assuming a fixed control sequence), how can we efficiently estimate and
compare the performance of alternative decisions?

2. For a completed design, how can we increase the performance of the system
at minimum hardware cost and minimum design and/or design change time?

The main goal of this research is to develop a methodology which can answer these

questions at the micro level of digital systems. Obviously the emphasis of the speed-up

techniques to be developed will be on minimizing the change in the control and data flow

of a given partial or complete design.

If new operators are to be added to speed up the execution, both the data and control

flow must be altered to get the maximum advantage of them. Also additional storage

elements are often required in order to store the intermediate results which may exist in

parallel. Thus, the task will involve almost the same amount of work as the initial

design. For example, adding a new ALU for speed-up often requires rewriting the

microprogram as well as changing the value allocated to the operand and/or result .

registers, which automatically involves changing the interconnections for both the data

flow and control flow. In order to avoid such costly and time consuming iterations, we ~~

consider adding or reconfiguring only storage elements, which can be done without

altering the basic structure of the original control and data flow and thus is considered

to be transparent to the data flow and control flow analyzer. Assuming that the control

sequence of the micro cycles is fixed, we consider two basic approaches to the problem:

1. For a set of chosen and allocated functional modules (for both the data path
and the micro engine), add and connect minimal number of storage elements
necessary to achieve a certain level of performance.

2. For a completed design, add certain number of storage elements to the data
path and/or micro engine in such a way that the performance increase will be
maximized by virtue of maximum execution overlap of the micro cycles.

In any case, we try to maximize execution overlap of the micro cycles considering the

time overhead due to branches, resource conflicts and data dependency relations.

Maximum execution overlap can be achieved by synthesizing an optimal clocking

,wlnw Nhi(h involves the following tasks:

7

" optimal assignment, relocation, addition or deletion of the stage latches

" choice of an optimal clock period and the number and lengths of the clock O

phases

* optimal clock signal gating and routing.

In carrying out these tasks, we formulate the problem as a graph theoretic problem.

Digital circuits are modeled by directed graphs which show the pathways of the data and

control flow. By properly weighting the vertices and the directed edges, we can model

the execution sequences of the micro cycles as tours on the graphs. Also, the time taken

at each segment of the tours can be computed easily. Assigning and/or inserting overlap

stage latches can be modeled as finding multiple edge-cut sets. Once the locations of the

h stage latches are determined, then the optimal clock period and clock sequence can be
computed considering the synchronization overhead discussed before.

Chapter 2 gives motivation for the research and discusses previous work. The problem

formulation is given in chapter 3. Chapter 4 presents the clocking scheme synthesis

results. In Chapter 5, the result of static clocking scheme synthesis will be

demonstrated. In the example in Section 5.1, the micro cycle time of a P-programmed

CPU is shown to be sped-up significantly.

JI*

8

2 MOTIVATION AND BACKGROUND

In this chapter, we discuss the general design environment of clocking scheme synthesis. i

A brief overview of the general digital design problem is followed by the definition of the

task, clocking scheme synthesis. We also define the speed of digital systems, which

will be used to evaluate the performance of clocking schemes and ultimately of digital

systems. We conclude this chapter by postulating the necessity and importance of a good

design methodology for clocking scheme synthesis.

2.1 The General Digital Design Optimization Problem

The general digital design problem is that of producing a hardware implementation of

the system which exhibits a required behavior and satisfies any constraints imposed on it.

Among the most typical design constraints are minimum required speed and maximum

allowed cost and power consumption. Common optimization goals are maximizing speed

and minimizing cost and power consumption within the constraints. Unfortunately, these

optimization tasks often compete with each other. For example, the minimum cost

implementation will rarely be the maximum speed implementation. For this reason,

desired design goals are often used in addition to constraints in order to direct the

optimization process towards a certain direction. Whenever there is more than one .', %

noninferior design alternative, the one that best meets the desired goals will be chosen.

Examples of desired goals are to maximize speed, to maximize speed-to-cost ratio and to 1

maximize speed-to-power consumption ratio.

Use of desired goals makes the design decision process unambiguous and efficient.

Then, the synthesis task can be partitioned into subtasks as listed below, which will

iterate and proceed towards the direction guided by constraints and desired goals:

1. Choose an appropriate design style (design style selection)
N

2. Choose potentially optimal sets of functional and storage modules which can
maximize speed and minimize cost and/or power consumption (module
selection).

3. Allocate operations and data values to functional and storage elements. hI
Partial interconnection may also be carried out (resource allocation).

=i.

.'K' ~ * .. .*, ~ * -:- * .:-

4. Find an optimal configuration and/or interconnection of modules so as to

maximize performance. Detailed control hardware and/or microprogram are
also synthesized during this phase (configuration and interconnection).

5. For a given design which is non-optimal, find a near-optimal reconfiguration
of the design within an allowed cost increase or speed decrease limit
(performance increase or cost reduction by reconfiguration).

In cases when near optimal solutions are desired, the complexity of these tasks is in

decreasing order, since the solutions for the earlier phase problems can only be

guaranteed to be optimal after a large number of (in worst case, all possible) solutions for

the later phase problems are compared. Unfortunately, finding optimal solutions even for

some of the later phase problems is known to be intractable. For example, the resource

allocation problem can be modeled as a job shop scheduling problem, which is known to

be NP-hard [211. Also, as a subproblem of phase 4, the microcode compaction problem

has been proven to be NP-Complete [371. Many other problems with exponential P1%

complexity in various design phases have been identified [6, 381. Only several problems

of the last phase turn out to be polynomial time solvable [14, 30, 311.

In essence, synthesis tasks are carried out by estimating and evaluating cost and speed

of feasible hardware implementations of the system at various stages of the design .,

process. Naturally, in order to carry out these tasks efficiently and to get a near optimal

design, a good estimation and evaluation strategy is crucial. Especially, in the last two

phases. it is desired that the speed estimation and evaluation procedures be able to

suggest possible changes in the given design which can increase the speed.

2.2 Definition of the Clocking Scheme Synthesis Task I
ve have seen so far, the digital design problem is known to be computationally

intractable. As one way of reducing complexity, synthesis of digital systems is usually

partitioned into data path synthesis followed by control synthesis (this is true for both

automated design systems [34, 15, 411 and human designers). In such design procedures,

clocking scheme synthesis is constrained by both the data path design and the control

design. (locking scheme synthesis is carried out as one of the last tasks of control

svnthesis. For a given data path design and a control hardware design, the task of

('l, ki - - hem e ! nthesis is as follo s,

,, . . - .. • .-. .- ... - . -- %

-i
10

9 choose an optimal clock period

* determine an optimal number and length of the clock phases

i assign clocked control signals to clock phases and route to the data path

However, most of the important parameters determining the execution speed of digital

systems are fixed during the data path and control design. Thus, optimality of the design

can be guaranteed only if clocking scheme synthesis is done concurrently with both the

data path design and other parts of the control design. For example, cheaper data path

designs often require more elaborate clocking schemes and therefore a final solution to

the data paths cannot be chosen until the clocking cost is examined (and indeed, until

the entire cost including control is examined). In this research, we shift the occurrence

of clocking scheme synthesis to somewhat earlier phases of the design procedure in order 61

to synthesize near-optimal digital system-,. We define the task and goals of clocking

scheme synthesis as follows:

INPUT

(i) Partial data path and control design with chosen functional units andI2minimum required storage elements2,

(ii) Types of micro cycles (e.g., microinstruction formats or Node-Module-Range
bindings [261, which specify the direction and propagation time of data values
through functional elements during micro cycles) and

(iii) Expected sequences of micro cycles to be executed.

CONSTRAINTS

i) Minimum execution speed of the micro engine,

(ii) Maximum number (or total bit width) of storage elements and

For any data path. the minimum number of storage elements is determined by the maximum number
of live values 121 at any time. In most cases of computer CPU designs, the registers (e.g., ACC, MAR, and
1/O buffer) and the main memory which the machine language programmer can directly access are the

minimum set et ttorage elements. For control hardware, it can be either the P-PC or the microinstruction
register

• ,.,:-........%.% .-..*.%.. -, , •-.- ...-.. .-, ,...,.. .:
2 i- tt l -,.m . . - * - ---- . -

(iii)Maximum number of clock phases.

OUTPUT

(i) Assignment, insertion or deletion and interconnection of storage elements
necessary to obtain a certain execution speed (or speed to cost ratio),

(ii) Minimum and optimal (not necessarily distinct) clock periods to maximize the
execution speed,

(iii) The optimal number and length of clock phases and

(iv) Clock signal routing to stage latches.

We consider three cases of partial data path designs. The first case includes designs

which have not been completed yet and need more storage elements to be allocated and

connected in order to satisfy the machine behavior. The second case includes designs

* which have already been completed and only the connections from and to the storage

elements are partly or completely undone for the purpose of reconfiguration of the

interconnections. The third type includes completed designs as they are. For completed

designs, we may need to add or delete storage modules in order to increase performance

at minimum cost or to decrease cost at minimum sacrifice of speed. In any case, the

objective of the clocking scheme synthesis task is, while satisfying all the design

constraints and desired goals, to maximize the execution speed of the system by

optimally configuring, adding and/or deleting storage modules optimally and

consequently determining an optimal clock period and number of clock phases.

There is no absolute ordering in carrying out these tasks. The result of each task may

affect the results of one or more of the others. For example, choice of an optimal clock

period and determination of the optimal number of clock phases depends on the result of

optimal stage partitioning. Also, the maximum allowed number of clock phases (due to

clock generator cost and/or clock signal routing complexity) will affect both the choice of

an optimal clock period and optimal stage partitioning. For this reason, a unified

solution met hodologyj is strongly desired in order to examine the attributes of all the

design decisions in parallel. *%

.N

12

2.3 Deflition of Speed of Digital Systems

As mentioned in the first chapter, the system tasks (processes or programs) consist of

sequences or macro tasks, each of which consists of one or more fixed sequences of micro

cycles. Therefore, execution times of system tasks can be determined by the execution

sequences of their micro cycles and the execution time of those sequences. In this sense,

the execution speed of the micro engine can represent the execution speed of the system.

There are several ways of defining the execution speed of a micro engine of a digital

system for performance evaluation:

1maximum possible execution speed

2. execution speed for certain micro cycles .

3. execution speed for a (weighted) average mixture of micro cycles

The first two parameters are not realistic since they do not encounter an actual

mixture of the micro cycles. The third parameter, which is an overall performance

measure of the system, can be computed by assuming the average mixture of micro

cycles over a long enough time period. The total estimated execution time divided by the

number of micro cycles executed will be the average expected execution time of a micro

cycle. Appropriate weighting functions may be used to indicate the average occurrence

and/or importance of each micro cycle.

2.4 Previous Work

Since the task of high-level (functional level) digital design automation was launched

more than a decade ago [101, there has been a vast amount of effort in automating

various components of the digital design such as design style selection [40, 29], data path '

design [22, 39, 18, 20], microprogram synthesis [1, 35, 33], and integrated design .

automation systems [34, 15, 41, 16]. However, there has not been much work in the area

of clocking scheme synthesis except that done for pipeline control, which can be

considered to be a special case of general clocking scheme synthesis. As we have

discussed before, the clocking scheme synthesis task is important in optimizing the speed

of digital systems and must be carried out together with the data path and control

design. However, it has been either buried under architectural design 134 15, 41, 16]. or

. :

13

assumed a priori, as a part of the control design 15, 24, 33, 31 or data path design [181. In

some cases, clocking scheme synthesis alone is carried out for already completed designs

[12, 30, 31]. Among them, we will briefly discuss several which are most closely related

to this research.

2.4.1 Related Work In Clocking Scheme Synthesis

Recently, as one of the projects closest to our research, Leiserson [30, 31] proposed a

technique which determines a relocation of the registers of a given data path in order to

minimize the clock period. The data path is modeled as a directed graph where the

vertices represent functional modules and the directed edges represent interconnections.

The locations and the number of registers are indicated by the edge-weight. The basic

assumption of this technique is that all the hardware modules are performing useful

operations at any time and thus all the registers are clocked at the same time by a single

clock source (e.g., a systolic array). The technique moves the registers of the original

design along the direction of the data flow. If the movement is to be made onto any

forked 3 edges, registers are copied to all of the fork-edges in order not to change the

original data flow. The optimal relocation of registers is determined as the design in

which the longest propagation delay between any two registers is minimized, which

minimizes the clock period. The major contribution of this work is that it suggests

several formal tools for timing analysis of digital circuits, which are the graph model of

the digital circuit and the problem formulation using linear and/or mixed-integer linear

* programming. There are several shortcomings of this technique to be used in general

cases of digital systems speed-up. They are:

* The technique assumes fixed clocking for all the registers at the same time

oeThe technique assumes fixed data flow for all time

o Control hardware timing is not considered

o Register propagation delays are ignored

3In this model, all the forks are AND forks since every hardware module is performing useful operations
and thus all the interconnections are carrying useful data values.

Z Z

WK. -W 7.WTV -~.

II
14 U

Boulaye [5] discusses speeding-up pipelined micro engines by minimizing the time

overhead caused by the conditional branches, which is accomplished by clocking the

condition latch as early as possible. This approach can also be considered as relocation

of registers to reduce the critical path or the critical stage of a pipeline. However, if the

propagation delays of both the data path stages and the stages of the micro engine are

not considered together, optimal relocation cannot be determined. Also, in any

instruction pipeline, any branch causes resynchronization overhead, which also involves

the termination and re-initiation of the data path stages.

Andrews 131 considers using a multiphase clocking as one way of reducing the number

of microinstruction fetches from a slow microprogram storage. By using a multiphase

clock, microinstructions can be horizontally coded and executed serially in several clock

phases without having an expensive data path. As he mentions, the performance of this

technique depends on the coding efficiency of the horizontal microprogram. If the

microinstructions are sparsely coded, then the resource utilization efficiency will be low.

Also, after the completion of a microinstruction which has only the microoperations with

short execution times, there will be idle time until the fetch cycle of the next

microinstruction. This is true for any microprogram (vertical or horizontal) if execution

overlap is not used. However, if execution overlap is used, this is not always true since in

case of overlapped execution, the execution speed of the micro engine depends much p
more on the longest microoperation execution time rather than the total execution time

span of the microinstructions. Moreover, if execution overlap is properly used, vertically

coded microinstructions can be executed as fast as horizontally coded ones. This saves a

significant amount of design time and avoids the complexity of horizontal microprogram .

compaction, which is known to be intractable 121, 371.

As another approach, Berg [4] characterized the timing behavior of a given control and

clocking scheme in order to provide a guideline for the synthesis of a fast and correct

microprogram. The timing behavior of a controller at the macro level is modeled as a

finite state machine. The model allows multiphase execution of micro-instructions.

However, the model is focused on modeling the timing of the interactions between main

system blocks such as the CPU, main memory, and I/0 controller.

ml
-7

15

Davidson et. A. [121 suggested a formal technique to analyze and determine the a

reservation table for the sequencing of pipelined data paths with loops. The state of the

pipeline is modeled as a finite state machine where each state represents the utilization

of the pipeline stages. This reservation table technique is extensively used in general

pipeline designs. We believe that this technique can be easily extended and used to

analyze a multiphase clocking scheme for general multistage digital systems.

General insight into control architecture for pipelined systems is discussed in depth by

Kogge 1271 and Ramamoorthy [361. Basic clock timing requirements for pipelined data

paths are analyzed by Cotton [91. A technique for performance measurement of static

pipelines is proposed by Lang 1281, which uses a table-driven simulation model.

2.4.2 Other Related Work

The basic concept of execution overlap under a centralized control originates from the

look-ahead [25] techniques at the macro (machine instruction) level. Examples of

machines which implement macro level execution overlap include the CDC6600, and the

IM 360/91, 195 and 370/165. They assume that instruction fetch, decode, and execute

cycles, each consisting of a sequence of micro cycles, take almost equal time, which is the

basic assumption of general pipelines. Possible execution overlap is predicted by

checking the type and execution status of the current macro task being executed. /

Typical checking mechanisms use condition flags and/or counters which represent the

state of associated resources. Naturally, look-ahead techniques assume flexible execution

control mechanisms implemented by the micro level sequencing primitives [241.

However, at the micro level, implementing look-ahead is very costly and difficult since

the look-ahead mechanism must be much faster than the micro cycle time in order to

achieve execution overlap, which, in most cases, requires hardware level primitives.U

Nagle [331 provides a good insight into the general problems of control synthesis at the

micro level, although all the problems are not analyzed in depth. The major contribution

of this work is microprogram synthesis under given constraints, such as the capacity of '
the microprogram storage, speed requirements, and the number of control signals that

can be activated at the same time. The control flow optimization and control

p 16U

distribution techniques proposed can be used to reduce the number of branches, to I-

shorten conditional branching time and to reduce the number of micro cycles, which is

essential to increase the performance of the micro engine.

Cook [8] considered multiphase clocking of PLA's in order to reduce the power

consumption of the PLA. A precharge scheme using a multiphase clock is used to

compensate the turn-on/off time delay. Although he does not mention it, his PLA

partitioning technique may be very useful for multistaging a control store using PLA's.

For example, we can partition the AND-plane and OR-plane of a large PLA by inserting

a latch to latch the product terms. Then, since it is a sequential machine design, we can

overlap the propagation delays of the AND-plane and the OR-plane. t nh

2.5 Motivation

As we have briefly discussed, various techniques for speeding-up digital systems at the

macro level (or even higher level such as processes) exist. However, the ultimate

performance of these macro-level speed-up techniques depends very much on a goodIsequencing control scheme at the micro level, since the macro level tasks including those

used to implement the speed-up techniques are eventually implemented by certain

sequences of micro cycles.

As we have discussed in the previous section, existing techniques for high-speed

sequencing of micro cycles are not general in the sense that their models are very

restrictive and/or not precise enough to model actual digital circuits and sequencing of

the micro cycles. Also, each speed-up technique has been developed rather independently

and does not consider various effects of the result of applying the technique to the results

of other speed-up techniques or to the results of other optimization tasks such as cost

reduction. For these reasons, development of a more general model for clocking scheme

synthesis is strongly desired and is proposed here. The model and synthesis techniques

must be able to consider precise sequencing characteristics of the micro engines and

timing of the hardware as well as the cost of speed-up.
U

17

3 THE PROBLEM FORMULATION

This chapter summarizes:

* Problem definition and modeling.

e Extraction of the parameters affecting the performance of a multistage micro
level execution overlapping scheme (micro level).

The major problem components of clocking scheme synthesis are based on the

discussions in Sections 1.4, 2.2 and 2.5,. Sections 3.1 and 3.2 will discuss modeling the

sequencing and timing behavior of micro cycles. The discussion is based on those in
Sections 1.2 and 1.3. Sections 3.3 and 3.4 will discuss the sequencing behavior of the

overlapped micro cycles as well as the clocking and control requirements for micro cycle .,

sequencing.

3.1 Specifying the Functioning Times of Digital Circuits

The timing behavior of a hardware module can be considered as a function of the

timing of external excitations and the functions they specify. Thus, in order to analyze

the timing behavior of hardware modules, we must consider the functional behavior of

hardware modules.

3.1.1 The Circuit Graph

A physical hardware module which can perform multiple functions can be considered

to be multiple logical modules, which are defined as follows: 2
Definition 1: A logical module is a set of physical hardware modules which

can perform a certain complete function (either functional or archival) without

any resource contention with other functions at any time.

Logical modules may be either physically separated or share common physical

hardware modules. An adder chip or a pass gate can be considered to be a logical

module. A register chip can be considered as two logical modules, read and write

modules, if it can be read and written simultaneously without any conflict in using its

control and data lines. A bidirectional bus must be considered as a separate logical

module since it cannot be considered as a part of any one module connected to it. A set

18 U

of interconnection lines which are always used together to transfer a certain value can

also be considered a logical module. In this sense, a logical module can be considered a

unit hardware resource whose timing and functional behavior can be unambiguously W

defined. Also, resource contention between executions of the micro cycles can also be

represented in terms of the logical modules. From now on, the term module will always

imply logical module, unless otherwise specified.

Using the concept of logical modules, we can model a digital circuit as a weighted,

directed graph (circuit graph), where the vertices of the graph represent modules and the

directed edges represent all the possible pathways for both the control and data values

between the modules in the circuit. The purpose of the circuit graph is to connect the

control and data path hardware together.

Definition 2: A circuit graph, G = (V,E), is a directed graph where the set
of vertices, V, represents modules, and the set of directed edges, E, represents the
pathways for data and control values between modules. A directed edge, e(ij),
belongs to E if any output port of module i is connected to any input port of
module j. The vertices are weighted with the propagation delays of the modules
(6) and the edges are weighted with the bitwidths of the interconnection lines (a).

STAR 09A WRT .IZ. "ITT[,=..
SOUSC £LU uIPI Sf3?

walECT 09AD C S ELECT SLETg

Figure 3: A Circuit Graph of a Microprogrammed Computer CPU

',

By weighting the vertices with the propagation delays of the modules, the propagation

delays of data values and control signals along any path in the circuit can be computed.

The vertices for interconnection lines with non-negligible propagation delays must be

added. The bitwidtbs of the data and control flow can be computed easily using the edge

weights. In the case of a partially designed system, all the necessary interconnections for

the flow of control and data values specified in the data flow graph and timing graph

[26] must be added. Figure 3 shows an example of a circuit graph.

* 3.1.2 Specifying the Propagation Delays of Modules and Circuits4

The micro or minor cycle time can be computed by summing up the propagation

delays of the control and data flow through the modules along the execution paths. We

consider two types of propagation delays whichardeidasflo:

Definition 3: The port propagation delay(PPD) of a pair of input and
output ports of a module is the maximum time taken for any change of input

* values to possibly change any output value.

For an adder, carry-in and operand ports are input ports, and sum and carry-out ports

are output ports. For a read module of a storage element, the read control input is also

an input port. For a bus, each set of lines outputting data on the bus is an input port

and each set of lines receiving data from the bus is an output port.

Definition 4: The module propagation deiay(MPD) of a module is the
maximum port propagation delay for all possible pairs of input and output ports
of the module (maximum port propagation delay).

In order to compute precise execution times of the micro cycles and the critical paths

of the circuits, the PPIs are preferred for the vertex-weighting of the circuit graphs.

However, if the PPIs are used, more complex variations of the original circuit graph or

complicated graph theoretic algorithms are required. In the models that we are going to

discuss in the following sections, we will use MPDs.

20

3.2 Modeling Sequencing Behavior of Micro Cycles

In order to analyze the sequencing and timing behavior of the micro cycles efficiently,

we introduce two directed graphs, the MEG (Micro cycle Execution Graph) and the

CONI (Chain Of Minor cycles). They are based on the circuit graph and model the

pattern of resource usage and timing of the micro cycles.

3.2.1 The MEG - the Micro-cycle Execution Graph

In order to model the pattern of resource usage and the execution time of all the types

of micro cycles, we construct edge-weighted, vertex-weighted digraphs, the MEG's

(Micro-cycle Execution Graphs). The MEG's are subgraphs of the circuit graph.

Definition 6: For a given circuit graph, 9(V,i, the MEG for a set of one or
more micro cycles, G(V,E), is a rooted subgraph of 9 where the set of vertices, V
C V, and the set of directed edges, E C it, represent only the modules and
interconnections activated by and necessary to the execution of the micro
cycles in the set. 4 The vertices and edges are weighted in the same way as in the
circuit graphs. In addition to the bitwidth-weight, the edges are also weighted
with the number of visits to the edges during a micro cycle (X).

The MEG's are rooted by a common root. In general, for any synchronous

sequential circuit or finite state machine 1171, there must be memory and/or delay

elements in order to prevent state-change races and/or to control the time intervals

between state changes. Among the memory or delay elements, we can choose a subset of

them as the starting point of every cycle. For a microprogrammed micro engine, it can

be either the u-PC or the microinstruction register. In case of a hardwired sequencer, it

can be either the state counter or feedback state-memory.

Figure 4 shows two MEG's derived from the circuit graph of Figure 3. using the MPD"

Both are rooted at the u-PC. Figure 4-(a) is the MNEG for non-branch type

microinstructions. The execution sequence of this type of microinstruction is:

. Increment PC (vi).

4 Read modules whose outputs are always enabled and write modules which are not written during tbe
execution or the micro tasks in the set are not included although the value, contained tn them m% be
needed by the micro cycles

%i
, -:, ,.".-'.-.. .-: -...-.- ,'-. .-.. .." .1

21

V3 *9

SORC BN

ELEC RED
#9

I

1*C COTO

IN.TO EA. .

(a)~ NOT fo 0o-rnh4ur ak

DEST

(a) MEG for branch miCo tasks

Fiue% xmlso h E' o h ici rp fFg

2. Ftch he mcrocycl poitedto b thePC v)
.r. SORC v

vi? KLUTNX

3. Deode te cotrol ieldsof te fethed mcro ycles opcd v1 oern
p.-. ~~~J reise addes (v3),RO ALLucio oeG4) oaeshf ucIoCod

3. ~ ~ IC Perfor seetd L peain v)

O5OO v SW P

Figur 4: Exmpe of th E ' fteCrutGaho . 3

2. Fetc th micr cycl pone ob teP v)

22

7. Store the result in the selected register (vl0).

1

An example of the execution sequence of a branch micro cycle corresponding to the

MEG of Figure 4-(b) is as follows:

1. Increment PC (vi).

2. Fetch the branch micro cycle pointed to by the PC (v2).

3. Decode the control fields of the fetched micro cycle: opcode (v12), condition
select (v3), branch address modification (v4), and branch type (vs).

4. Select a test condition and select the full jump address (v6).

5. Load the PC with jump address. At the same time, if it is a CALL to a
subroutine, save the current PC contents in the stack (v7).

Assuming that there are no nested cycles, the MEG can show the sequence of -

activation of the modules during the micro cycles by means of the visit-weight of the '

edges, x.5 Also by weighting the vertices with propagation delays, the MEG can also

represent critical execution paths and execution times of micro cycles. The MEG's can

be used to determine the locations for the stage latchs which either have to be added or

already exist. The locations and connections of the stage latches determine the

interstage propagation delays between the stage latches. Also, by weighting the edges

with the bitwidths of the corresponding interconnection lines (a), the bitwidths of the p.

added stage latches can be computed.

3.2.2 The COM - the Chain of Minor Cycles

Once the locations and connections for the stage latches are determined, the interstage

propagation delays are also determined and thus the minimum requirements of the

clocking and timing for the micro cycles are determined. This basic timing requirements

are modeled by one or more line graphs - more precisely, chains (COM: Chain Of Minor .. .

cycles) - which show the minimum required execution time of minor cycles as well as the '.

minimum required clock period.

5In case when there are nested cycles which are visited more than twice, then a vector of vertex indices
which represent the sequence of visits to the modules may be associated with each MEG .0* ,"

,°1

23

V I
. S .

L,, V

I"-" -" V I "-" I""

S.

(Al (ml

J..

Figure 6: COM's Derived from the Results of Stage Partitioning

Figure 5 shows examples of the COM's derived from the results of stage partitioning of

the NEG's of Figure 4. The locations of the stage latches are indicated by the edge-cut

lines in the MEG's. In case (A), the stage latches are the p-PC, an added latch next to

the control store and the register bank of Figure 3. Let #j be the clock phase used to

clock the i-th stage latch, Li, and Di be the phase difference between oi and oi+t" Also

let $(i) be the weight of vertex vi, and (3) + (7) _(j), for j -4, 5 and 6 (COM (A)).

Then the timing requirements are specified as: iA

DI > $1() + (2) + (12) + Dss(L2)

D2 > Dsp(L 2) + (3) + 87) + $8) + (9) + 8(10)

where D and Dsp are the set-up and storage propagation delays of storage elements

defined by Hafer [ig]. Note that Dsp(LI) and Dss(L3) is already in-!uded in the MEG as

v and v10 (v7 in COM (B)), respectively.

At the end of the chain, D3 must be added in order to consider the completion time of

p.5

24

all the effects of an execution of a micro cycle, although it is not explicitly specified iD

the MEG. It is necessary to analyze the effect (data dependency, resource contention, '

etc.) of a micro cycle on its successor. For example, if the next micro cycle reads the

result of the current micro cycle which will be stored in the third stage latch (e.g., v 0 of
MEG (A) or v7 of MEG (B3)), then the next micro cycle can only read the correct value

after the buffer has been clocked and the stored values propagated to its outputs.

The COM's can be used to determine a major clock period and the Dumber and length

(phase lag) of the clock phases which clock the stage latches and execute the micro

cycles. Resource conflicts between the minor cycles can also be represented by attaching

the module names used by the minor cycles to corresponding edges of the chain.

3.3 Sequencing Behavior of Overlapped Micro Cycles

In this section, we analyze the sequencing behavior of the overlapped micro cycles

according to their timing, pattern of resource usage, and interactions (data dependencies

and resource conflicts) between them.

Maximum Initiation Rate of the Micro Cycles

The maximum initiation rate of micro cycles is defined as the maximum possible

number of initiations of micro cycles during some unit time period when there are

neither branch micro cycles nor resource/data conflicts between micro cycles.

Figure 6 shows examples of micro cycle sequencing with different sequences of clock

phases. We assume a static clocking sequence. (a) does not use any overlapping, hence

there is only one stage-latch and one stage. The micro cycle times of (b) through (d) are

longer than that of (a) due to the propagation delays of the stage latches. In any case,

the maximum initiation rate of the micro cycles is the same as the clock rate, tc3,. The

clock period must be longer than the longest interstage propagation delay in order to

ensure that no two micro cycles occupy the same stage. Figure 6-(b) uses the shortest

clock period possible, which is 2.

25

%
1
k-1 I

t
h- 1 2 13. u

(a) No *"ttlp. ty 1 k

3p1k I

02 m

1* 2 3
1 2 2 1 2 9 El 10 12.

(b) 1 branlap . 2te 2.

G 2 4 6 1 10 12 13 time

(C)
t
ik branch. - 2

Figure 6: Examples of Micro Cycle Sequencing and Clocking

Micro Branching

A branch micro cycle delays the fetch of the next micro cycle until the earliest fetch

clock cycle after the completion of the branching. Due to this resynchronization

overhead, the shortest clock period does not guarantee the fastest overall initiation rate.

Even increasing the clock period may result a faster execution if it can reduce the

resynchronization overhead. As shown in Figure 6, the total execution time of (d) is

shorter than that of (c) in executing Ik.1 through lk+1 . Thus, the overall initiation rate

will also depend on the frequency of the branch micro cycles. Therefore, determination

of the optimal clock period should consider the resynchronization overhead due to

branches.

Resource and/or Data Contention Between Micro Cycles

Resource and data contentions between micro cycles are other causes of

resynchronization overhead. If there is any data or resource contention between any two

micro cycles, fetching the later micro cycle must be delayed until its initiation does not

cause any contention with its predecessor. The delay time is dependent on both the

clock period and the pattern of data and/or resource contention between the micro uI

• .:us

''5 ~ ..q ~ ~ .. . * *.' .

26

cycles. These cases are shown in Figure 7. In case (a), if Ik+1 is initiated as the dotted

cycle (Ij+j), then there will be a resource conflict or data dependency violation between

the minor cycles using resources R14 and R23. Case (b) does not have any

resynchronization overhead. This shows that the resynchronization overhead can also be

reduced by choosing a proper clock period.

.Z,

|1 .II l 312 3 lil 4
.. . .. ' al 312 313 3ilt

R21 R22 R23 324 121 122 3

LAO,----------I
. ..

0 3 6 9 12 15 0 2 12 3,
tim ttm•

(a) t1 7 . 3. 2 tl2 i * 4.. n 23

P.ya eh. wverhed - 3, WD resy"ch. eerwed N

Figure 7: Resynchronization Overhead due to Data/resource Contention

Resynchronization Overhead vs. the Number of Clock Phases

The time required for resynchronization may depends on the length of the clock phases

even if the same clock period is used. Increasing the intervals between the clock phases ,

may reduce the number of distinct clock phases without increasing the clock period.

Figure 8(b) shows a clocking sequence which is exactly the same as the COM, which
requires three distinct clock phases. Figure 8(c) has only two distinct clock phases with

the same initiation rate as (b) regardless of the resynchronization overhead. However, in

(d), the branching overhead is longer than that of (b) or (c) by one clock period (4 time -

units) and thus the overall initiation rate is lower. Although there might be some N

difficulties in gating and routing a single phase clock to multiple stage latches selectively,

reducing the number of clock phases may reduce the physical routing problem

significantly. However, if the longest clock phase interval is increased, it will always

result in a slower maximum initiation rate since the minimum possible clock period must

be longer than the longest interstage propagation delay.

%%

%,,. -P-

27

41~~t .42 dt .z3 .449 0 .j
3 a ' 4 -2 12' "

(€ 3 ' I I" t
(a) 1 e roWl

02 p I

II , ,21 03 D40 4 12 16 20 26 tim
3:2: 4 : 3D

12: 1 02 D3

13 ,: . i 12. g a *

(b) (d) z : :1

03 0 , I 6_ , I

0 4 S 12 16 210 24 tm0 4 6 12 16 20 26 tim

Figure 8: The Number of Clock Phases vs. Resynchronization Overhead
.. JI

3.4 Clocking Requirements of Overlapped Micro Cycles

In the worst case, we may have as many distinct COM's as the number of MVEG's,

which also requires as many distinct clocking sequences for optimal design. Especially in

the cases where execution overlap is extensively used, all the different clocking sequences-.

may have to be overlapped and thus as many separate clock generators are required. A ,

very complex initiation and termination control mechanism for the clock sequences is

required in order to prevent conflicts in the usage of both the hardware resources and

the data values between micro cycles using different clocking sequences. In actual

designs, this is not realistic and seldom happens because of the cost and control

complexity of the clock generator(s) and clock signal gating and routing. In actual

designs, a single clocking sequence (fixed number and sequence of clock phases) is usually

used with proper gating and routing of the clock phases to the stage latches. In addition,

wait cycles to extend certain clock phase(s) are often used for micro cycles with

exceptionally long minor cycles (e.g., I/O and main memory micro cycles). In this

report, we will focus on synthesizing clocking schemes with a single clocking sequence

while allowing all the variations as discussed. Two examples of such clocking sequences

for the COMs of Figure 5 are in Figure 9.

,..."

%~

28

01 2.0 2' #31 o3 01 02.02 ' #3.#e31

I - I I--l ----I I - I -I ---- I

----. . t i ---> I< -- t 2 --> lt 3 1 U4 I 1< ----t l ---> 1< --- t 2 ---> 1 t 3 I'

tl = max{D1. DI1 tl = maz{D1, DI')
t2 = D2' t3 = D2 - D2' t2 = ma({D2, D2'}
t4 = D3 (t3 + t4 > D3') t3 = m=0lD3, D3'}

(a) Dynamic clocking (4-phass) (b) Static clocking (3-phase)

Figure 9: Examples of Single-chain Clocking Sequences

The dynamic clocking sequence, (a), is determined by the overlap of all the COM's.

Clock phases are gated and routed selectively according to the type of micro cycle. In

the static sequencing case, all the micro cycles are executed by a single common clock

sequence, a scheme which has been the most widely used in general purpose computer

CPU's and simple synchronous digital controllers. Each type of clock sequencing has its

own advantages and disadvantages. Dynamic clocking sequences require more clock

phases and thus more expensive clock generators. However, by making the length of each

clock phase as short as possible, they may reduce the resynchronization overhead. In

other words, the overlapped time between minor cycles with resource contention can be

minimized. However, in any case, the longest interstage propagation delay is not

changed and hence the maximum initiation rate of the micro cycles will be the same.

,

*'a'a~~ o . - .

29

4 LOOP-FREE CLOCKING SCHEME SYNTHESIS RESULTS

This chapter contains discussions and results of static clocking scheme synthesis for the

sequencing of loop-free micro cycles. By "loop free" we mean that each micro cycle uses

the same (logical) module no more than once and thus there is no cycle in any MEG.

We analyze optimal stage assignment and choice of optimal clock period. Also,

determination of an optimal number of clock phases and their length is also analyzed.

These analyses are carried out under two different goals: (i) to find an absolute optimal

solution and (ii) to find an optimal solution with respect to certain constraints. Simple

and efficient algorithms to determine optimal positions of the stage latches and optimal

number of clock phases are developed. We believe that we can easily extend these results

to analyze data path cycle with loops and, furthermore, to analyze more general cases of

system timing styles. In each section, we summarize the results only. Detailed proofs of

lemmas and theorems are attached as an appendix. .4_

4.1 Definition of Variables

6

The module propagation delay of module i. .,

Lij The j-th inter-stage latch of the i-th COM (or MEG).

In the single static clocking case, Lj is the set of Li's for all i

Cij The control/data path stage in between Lij and Li'j+ 1

d. maz(Dsp(Lii) + D + Dss(Li.j+,)}. The maximum interstage
t ii ~FP(Cij) D 5 L)

propagation delay of the j-th stages.

dmax maxd. d2 ... , di} where m is the number of stages7 .

6 The reader ns urged to skip this section and refer back to it while reading this chapter.
. •. ,

m as the number of (t3ges of the MEG with the largest number of stages We call such a system an
m-stage system . •

.4.0"
*. aN

.1 ,',-

I
°

* . %"%" ° % ." %."%" - % .-%- % -o -" " - . %" -- ,% .',. - -.-... "° -. . . % '. . - %, -.. -..% p % ". . ".%,% ",. • " . " . - -

30U

ds ds= dI + d2 + ... + dm

A micro cycle as an instance of an execution of a micro task (e.g., an -

execution of a microinstruction)

S:b , nb A sequence of micro cycles of length n, (11.12. where there are ab
branches in (11. nI -I)

nd -- (n - nb - 1). The number of non-branch micro cycles in (11.2.
Note that the last micro cycle, I., is excluded from nd even if it is a non-

branch micro cycle. -

Clock phase j. Used to latch L for all i.

0j(k) Time when clock phase j latches L.. to execute a micro cycle I .

Di The actual interstage time of the i-th stage determined as:

D i -- 0i+6j) - oi(j) di, l<i<m, and Dm!dm

*D A chosen multiphase clocking scheme for an m-stage system

WD = (D1,D 2, ... ,Dm)
Or

Dmax max{DI , D2 , ..., Dm}
p

Ds Di + D2 + ... + Dm

Ei The actual execution time span of type i micro cycle over Ds.

to Clock period. t D

T D 0b ab
7TIU b) Execution time for an execution sequence, S. with *D and ty (from o,(i) to

c-y

T(x) Tas a function of tcy (x) with fixed * and S

sy "'as a function of S (y) with fixed toy and ,

.=

*1

_7M %

3'

4.2 Execution Speed Analysis

Determination of the Minimum Clock Period

The minimum clock period for a multiple stage system is determined by the interstage

propagation delays. In order to ensure correct sequencing of micro cycles, the minimum

clock period should be longer than the longest interstage propagation delay [9, 36, 7].

Lemma 1 : For an m-stage system, M, with the stage times (D1, D2, ... ,D)

min(tcy) = Dm . (Refer to Figure 2, 7, 8, or 9)

The proof is found in the Appendix.

Execution Time of an Execution Sequence

For an execution sequence of micro cycles, the execution time is defined as the time

from the fetch clock phase for the first micro cycle in the sequence to the earliest fetch

clock phase after the completion of the last micro cycle in the sequence. For an

execution sequence of n micro cycles, if there are no branch micro cycles in it and there

is no resynchronization overhead, then the execution time, T, is computed as the sum of

the following:

1. (n-I).tcy for the first (n-1) micro cycles which are initiated every tcy period.

2. !-2 .ty, which is the execution time of the last micro cycle

T= (n - I +).tcy (4-1)

Slow-Down Due To Branching

Any branch cycle delays the fetch of the next micro cycle until it completes branching.

The difference between the fetch time of next micro cycle after a branch cycle and after

a non-branch cycle is defined as branching overhead.

Lemma 2 : (Refer Figure 7) Let M be an m-stage machine with a multiphase !-locking

scheme V- (Di. D., D m) and clock period t For any two execution sequences.

* ? * P. P

D M C,'

.1 A

32

S 2 and ST let S2 be the same as S with some non-branch cycle, 1., 1 < j < n, replaced

with a branch cycle, I'. Then

s(S)-

----------- Ds --------- >1
Ii I------..I-------..I-..

12' I-------I -------- I - I
(when II is not a branch)

12 I------I-- ----- I-
(when I1 is a branch) ."

I<--tcy-->I< .-- 2 tcy -----> I I

If there are nb branch micro cycles, then the total branch overhead is

nb.[i-] - 1 (4-2)

Thus, the difference in execution times for two sequences of micro cycles is a function

of the cycle time and the total interstage times. In actual systems, there may be several :
types of branch micro cycles with different execution times (no more than 4 types in

most cases of micro-sequencers). Typical types of branch micro cycles which may have

different execution times are conditional branch, unconditional branch, decode branch

and "sense and skipa. In such a case, we can compute the branching overhead for each

type of branch micro cycle. For example, let E i be the execution time span of type-i

branch micro cycles over the sequencing chain. Then the branching overhead of type-i

branch micro cycles is {t C-- - cy

Execution Time of an Execution Sequence with Branches

The execution time of an execution sequence of n micro cycles with nb branch micro

cycles can be calculated as the sum of the execution time of n non-branch executions and

the branching overhead for n branches

b.

33

Theorem 3 : On an m-stage system M with a multiphase clocking scheme , - (D i ,

D 2 I Dm) and clock period ty, if there is no resynchronization overhead, an execution

sequence Sb is executed in:

T= {nd + [! '-.(nb+ 1}.tcy r

Theorem 3 shows the relationship between the execution speed and the number of

branches, the clock period and the length of the clock phases. The proof of this theorem

is found in the Appendix. -

Modification for Micro Tasks with Different Execution Times

As mentioned before, the system may have several types of branch micro cycles with

different execution time spans. Suppose that there are j different types of branch micro

cycles. Let nbi, I < i < j, be the number of type i branch micro cycles with execution

time span E, out of nb. Then, we can replace Equation (4-2) with

a I 1tYl43n bii y - 1 , y

Ic.'

Also non-branch micro cycles may have different execution time spans. Assuming that

we know the execution time span of each type of micro cycle and the execution sequence

of micro cycles, we can also generalize Equation (4-1). In order to generalize Equation %

(4-1), we only need to consider cases where the execution of 1, for some 1, 1 < n,

completes later than Io Since any branch micro cycle, Ii, I < i < n, must complete

execution before I+1 starts, we can exclude branch micro cycles from this special case

computation. Therefore we only need to consider such I s that there is no branch micro

cycle in between I and Io• Then we can replace Equation (4-1) with

(n-1l-t + max{fl -(n-1) }.tcy (4-4)

where 1 < 1 < n. and there is no branch micro cycle in between I and Ia.

Using Equations (4-3) and (4-4), we can fully generalize all the previous analyses to

2 .

'.': '" . ". ,...,.. . .% . p... - - - . . " . - . - . . - . , ."."

34

dynamic clocking analysis, where the micro cycles may have different execution time

spans. However, as we can see by Equations (4-3) and (4-4), dynamic clocking analysis .U
can simply be considered as a special case of static clocking analysis. Exactly the same

approach and methods can be used for both analyses by simply adjusting several

variables and/or constants as is done in Equations (4-3) and (4-4). For this reason, we

will focus on static clocking analysis. .

4.3 Maximum Execution Speed Analysis -. 1
Execution speed of a multi-stage system is a function of: ""

1. Interstage propagation delay di's. 4 '

2. Clock Period t "

3. Clocking scheme €, - (D 's)

4. Given execution sequence, S b.b-4
n

In this section, we analyze the effects of these execution speed parameters.

Determination of an Optimal Clock Period

Lemma 4 : Let M be an m-stage digital system with - (DI, D2 , ... , D.) fixed. On
nb

,M, for any execution sequence Sb

TD,) D S
D S

"

t(-k-) T(- --) for any integer k, []>k l, and real k', O<k'<k. 0

The proof of this lemma is found in the Appendix. With Lemma 4, we can see that the

execution time function in terms of the clock period is not linear and reducing the clock

period does not always reduce the execution time. However, we can determine an

optimal clock period of an m-stage system with fixed a clockiing scheme with the

following lemma.

Lemma 5 : Let M be an m-stage digital system with , - (D1 , D..D) fixed. On ,
nb

.

X, for any execution sequence Sab.

7-
- 2 . " , -. -

r a]ri . € ,.e, ' ' € ' " . o " ." . " " #, . . - ,' - . j . - - ,. o'.. . 4.'.",, ,•. ••" .. .-. ° .-. p .•.-

',p,- 'p .*" ,., • " . ., " , . ", , - -, . -. - . . ,. . . -. • - ,,... . .

35

minlTt)= min{Tt(Dma), Tt(-=)), where p r D
= ~ ~ ~ ~ ~ -mi-Y~nx't- ax

-.

Using Lemma 5, we can determine an optimal clock period by evaluating the execution

time of given execution sequence(s) only for two clock periods. In practice, execution

sequences may be nondeterministic due to nondeterministic conditional branches (e.g..

conditional branches on some external conditions and exception handling). However, if~."

we can obtain statistics regarding the average length and composition of the execution

sequence(s), then by using Lemma 5, we can easily estimate an optimal clock period.

Theorem 6 Let N be an m-stage digital system with % = (DI, D2, ... Din) fixed. On

M, for any execution sequence Sn,

min(T) = Tt(Dm) if (nb + 1).(Dmax -) <nd.

DS -''
Tt(Dmax) =Tt(L=) i n)(m x }=ld

= -I f + I)-Dmax - 1) ud.-L

t(P-i if (nb + l).(D - 1) > n

where p = and I = Ds (p - 1).Dml

According to Lemma 5 and Theorem 6, we see that the shortest possible clock period,

Dmax, may not be optimal. Next, we will prove that any clocking scheme other than the

original interstage propagation delays with Dm x > d (accord~nglv Ds > ds) will

always result slower execution speed for the same execution sequence of micro cycles.

Figure 10 shows an example of the relationship between the execution time of an

execution sequence and the chosen clock period. As shown in Figure 10, if there is any

branch micro cycle in the execution sequence, then execution time T is a discontinuous

function of clock period t . The slope of each straight-line is determined by the number

of branches (nb). If there is no branch cycle in the execution sequnct' at all, then T

becomes a straight line as shown with a broken line.

4, .. , ,. ,. . .- . . , . ,. , . . ,.,..A, , • .r..? ,;,; , ,. , ., . , - ., e ~ . -

36 U

D - 24 Mooc 312f)

ft - 100 ("iCTo cycles) n n

n - 70 (",n-branch

EXECUTO N - 29 (,branch e

TIME . . .micro cycles)

2000 1920

1320 1560 99

1 ,0

1000 /1 0..-

cy

4 6 a 12 24 (-S
CLOCK PERIOD .1?

%,

Figure 10: Execution Time vs. Clock Period

Theorem 7 : For an m-stage system, A, with interstage propagation delays

(d l , d2, ... , d), let d = (dj, d2, ... , dmn) (same as the original *'d) and D (DI, D2 .

Dm), where Di > di, 1 < i < m, be two different clocking schemes.

qD) >rin(7Td).".,:
If Dmax > d.. (then also Ds > ds), then min(T) > 0m..(.

Theorem 7 shows that, even if the optimal clock period resulting in the fastest
execution speed is chosen to be longer than the longest interstage propagation delay,

increasing the longest stage time (Dma) will always result in a slower maximum .4 e

execution speed. In other words, in Figure 10, if the longest stage time is increased, then

the length or the clocking sequence (Ds) is also increased and the execution time curves %

are shifted upward and to the right.

_ - - .4 - . . - -- - -

37

4.4 Optimal Stage Partitioning

In the previous section, we analyzed the performance of multi stage systems. As we

have discussed, if the execution sequence of micro cycles is given (fixed stage

partitioning), the execution speed of the system is determined by the clocking scheme.

However, the optimality of the clocking scheme is a function of the stage partitioning

since the interstage propagation delays determine the minimum requirements of the

clocking scheme. To determine whether to use a multistage scheme or not and, %
furthermore, to choose an optimal number of stages, we need the following:

1. A good stage partitioning method to partition the system into certain
number, k, of stages while maximizing execution speed

2. A method for performance comparison of a k-stage scheme to a single stage
scheme with given system specifications and statistics regarding the execution
sequence(s)

3. A technique for cost analysis (including speed/cost tradeoff) of a multistage
system compared to a single stage system.

In the first paragraph, we discuss stage partitioning and performance comparison. Cost

analysis and speed/cost tradeoff analysis will be discussed in the following paragraph.

4.4.1 Optimal Stage Partitioning

The stage partitioning problem consists of two subproblems:

1. Given the number of stages, k, get an optimal k-partition of the system to 5

maximize execution speed (i.e., partition each MEG in such a way that the
WOnumber of partitioned stages is less than k and the longest interstage

propagation is minimized).

2. Determine the optimal number of stages, k. which maximizes the execution

speed.

The second problem is a superset of the first problem. After determining an optimal

partitioning of the system for all possible cases of k, we need to compare the

performance of a single stage scheme to a multistage scheme for certain kVs. For this

reason, we need an efficient algorithm which can determine an optimal k-stage

partitioning of a given design, given the desired number of stages In thi,- paragraph, 'Ae

38 U

develop an optimal stage partitioning algorithm which runs in polynomial time to the

number of partitionable points (called intervals) of the design. We first introduce a

useful procedure and, based on it, we design the main algorithm.

The following procedure, KPART, determines the minimal number of partitions, k,

necessary when the maximum length of stage time is limited to LM X.' Time delays due

to the stage latches are also considered. Let 6max be the longest module propagation

delay. If Lmax = 6max + Dss + Dsp, then k found by KPART is the minimum number

of partitions to minimize the length of the longest partition of a given system. The

procedure also determines the locations for the stage latches, though there may be some

other partitions which have the same Lm x and k. The algorithm also computes the

actual minimum clock period after the stage partitioning. The partitioning procedure

will be demonstrated in the next paragraph using an example.

ALGORITHM KPART(G. Lnax. cuteset[N]. d[N]. dmax. Do@. Dsp. K);

(. G input circuit graph
{* Lmax maximum limit oi clock period > maz{} C)

{. cutest sets of edge@ on which stage latches are to be added *}
(S d stage propagation delay e

{. dmax computed minimum clock period < Lmax s}
{* Des Set up time for stage latches
{e Dsp Storage propagation time of stage latches *}
(S K The number of partitions determined *}

variable

H Set of the starting vertices of the current partition
SF Set of the current searching fronts
EH Set of the edge candidates to have stage latches

TEMP •Set of the vertices to be added to current H
NH Set. Starting vertices for the next partition

w(i) Delay time from the previous partition to vertex i
including 6"

OE(i) Set of all the edges coming out of vertex i
IEUi) Set of all the edges going into vortex i
mark(i): Boolean variable. True if vertex i is already checked

.,

-~ ., .•.. .- _-

3g

begin{*KPARTe)

for every MG do

NH := (root(s)); EH (); K := 1; dmaz 0;
W(i) := 6 for every i NH;

repeat {* until empty(NH) *)

{* get starting points of a new partition *}
K := K + 1; TEMP := NH; NH := {}; {*init H and NH *

{* initialize the propagation delays *

if (k > 1) then
for every i t TEMP do w(i) 6* Dep;

repeat {* until empty(TEMP) *

H := TEMP; TEMP

{* remove all indirect vertices *
for every i i H do H :.= H - descendents(i);

{* get searching fronts *}

SF {}.

for every i H do
SF SF + children(i);
EH EH * OE(i); {* candidate loc. for stage latch *)

for every j 9 SF do SF := SF - descendents(j);

for every j SF do mark(j) false;

for every i t H do
for every j c children (W" do

if j t SF then
ifi) * + Dos > Lmax

then
cutset(k) := IE(j); (* cut the edges *

EH := EH - IE(j); {* and remove them *}

{* update stage propagation delays *)
d(K) := w(i) * Des;
If d(K) > dax then dax := d(K);

{* if j is not a leaf. put it in NH *}

"-. t."

40

If j not a leaf then IK :a IN J;

{* if put in TEMP previously, remove it *}
If mark(j) then TEP := TMIP - J;

else If j not a leaf then
{* move searching head s}
If not ark(j)

then
mark(j) := true;
TMP TMP + J;
W(j) : (i) + 6;
EH := EN - IE(j) * OE(j); { update edges *)

{* if J is already in TEMP but with shorter *}
{ delay, then update it with this longer one*)

else If w(j) < •(i) 6 then
i(J) := (i)

until empty(TEMP)

{* Put all the edges still remaining in the cutest. *)
{ These edges go into vertices beyond the current SF *}
cutset(k) :- cuteet(k) + EH;

until empty(NH);

end{*KPART*}

This algorithm has been programmed in FRANZ LISP and currently runs on the J%

VAX/7$0 under UNIX 4.1-2.

Lemma S: The number of partitions, k, derived by procedure KPART is minimal. C

The proof of this lemma is found in the Appendix.
5%

Run Time Analvsis

The algorithm traverses each edge of the MEGs only once. For each traverse, it

performs comparisons and additions a constant number of times. Therefore. the total ","
t.5

U

* 5 :% * .

41

computation time is O(IEI), where IEI is the sum of the number of the edges in all the

MEGs. In actual designs, the fan-in/fan-out limits the number of interconnections
to/from each component, which can be considered as a constant. Therefore the time

complexity of this algorithm is O(IVI), where JVI is the sum of the number of the vertices

in all the MEGs. (In the case of infinite fan-in/fan-out designs, the time complexity will

be O(IVI 2).)

On the other hand, given a desired number of stages, K, we might like to determine

the minimum longest stage time, Lmax* The following algorithm. OPART, calls a

procedure which enumerates all the possible stage times of given MEGs. It uses a

Afergesort procedure and binary search followed by a call to KPART to check the

feasibility of the choice of Lma.* The binary search continues until the minimum feasible

Lm x is found to determine an optimal K-partition of a system with a given K.

Algorithm OPART(K; var d var p[K]);

K Input. Desired number of partitions
dim Output. Length of the longest partition 4)
p(i) Output. Locations for the i-th stage latches *)

{" This algorithm uses a binary search technique to determine *)
(' the shortest interstage propagation delay which partitions *}
(" the system into the given number of stages, K. C)

begin
(*enumerate all the possible interstage propagation delays*)
findintervals ([.. [1)

(*sort the propagation delays in non-decreasing order*)
Mergesort(l(t. .N].e[i. N);

startpoint : [N/21

lastpoint N ,e.

level -1 I.
k *; (initialize k')

{' binary search among all the possible time intervals '}
while startpoint 0 lastpoint do

42

begin

(* update statue *
level := levl*1

stop := [N/(2elovel)1;

(s compute the number of stages with given time interval *)
KPART(MEG. a[startpointJ. p[lK. d[K]. dmzax. Doe. Dep. k);

{* determine the direction of next search *)
if k > K then startpoint := startpoint * step

{ even if k = K. continue search to *)

(. find the minimum dmaz.
else if k a K then lastpoint :z startpoint;

startpoint :x startpoint - stop;

end
end

Run Time Analysis ' The main loop is iterated O(log(m)) times (binary search), where

m is the total number of modules in the MEGs. There are 0(m 2) elements in a making

findintervals O(m 2) (the enumeration of distances between all the possible pairs of nodes

in the MEGs). The inner loop inside the main loop takes 0(m) steps at each iteration.

Thus, the time complexity of the main loop is 0(mlogm). The MERGESORT for O(m2)

elements takes O(m 2 logm) time steps. Therefore, the actual runtime of this algorithm,

O(m 2 logm), is determined by that of the Mergesort.

Lemma 9: d... computed by the algorithm, OPART, is minimal.

Proof: Proof is obvious by the construction of the algorithm and its procedures. s[i]'s

are the only possible cases of the length of any partition and the algorithm chooses the

minimal possible length from s. Therefore, dm x is minimal.

In the next chapter, we will demonstrate how the stage partitioning algorithm works

with several examples.

J

• " "'% % % " • • % %' l'" " " "* " % % '""" '% % % = "% .,. • - I

43

4.4.2 An Example Stage Partitioning

Figure 11 shows the weighted MEG for the non-branch group microinstructions of the

HP-21%MX CPU. The execution sequence of the microinstructions is already shown in

Paragraph 3.2.1. The edge- and vertex-weights are computed directly from the actual

circuit diagram. Using this example, we will trace some important steps of the

partitioning algorithm KPART.

.9
3 vs vLi] - 15 (bits)

[L21 - 24 (bits) .

vs s 4 , D2 - 75 i107565 [0]) 32

Ll4D3 = 80 ..

99

15 205 9%

D4 a 40

[LS] - 16

9 to6 d = 85 (nsec)20 10 dmax

L2 D a 290 (nsec)S

3 A L5

Figure 11: An Example of a Weighted MEG of Figure 4

ALGORITHM KPART(G, Lmax=85, cutset, d, dmax, Dss=5, Dsp=10, K);

1. Initially, cutset(l) = e0 ,1 (the first stage latch LI), H = {v 1 }, SF = {v,,_

and EH = {el,2).

2. v, can be included in the first partition since 6, + 62 + Dss < Lmax. Thus H
is updated and new SF is computed.

a. v, is put in TEfP and moved to H. TEMIP is cleared.

b. SF gets (v 3, v4 ' 5 ' va, v 12)

c. Eli becomes (e. 3, e,, e,, e, , "

9. ..4

,."

,,.. .;, : , . , ,,. , .,,, .. ,,. ,,. ,.: -,,.., ., ., . .,. % -, ,,.-, - . , -. . .. , . :. -,. .. ,. -,.,, , .. ,:-, ..- , ', a" " ,

... r..w , .. w. . r. r - w r -. -- r . - r, -': .rrswu wr,rr,,.rx r ; , .r , r. -. r ;4~.r * r.. c 2 ;w-'2 -' '- r ; .- :., -~

44 U

d. Vertices v3, v4, v5 , and v. are removed from SF since they are

descendents of v 12.

3. v12 in SF cannot be included in the first partition since (6I + 62 + 612 + Dss)
exceeds Lmax.

a. EH = EH - IE(v1 2). e2 1 2 is removed from EH and put in cutset(2).

b. v12 is put in NH to become a head for the second-stage.

c. d(1) and dmax are updated with (61 + 62 + Dss) - 85.

4. TEMP is empty. Thus, all the edges in EH are also put in cutset(2). The
locations for the second stage latches are e2, 3 , e2 4 , e2 5 , e2,6 , and e2 12 {the

second stage latches(L2)). d(l) = 85.

5. v 12 is moved from NH to H and new SF and EH are computed.

a. w(12) = 612 + Dsp = 25, SF = {v3, v4, V5 v 6 }.

b. EH = {e 2 3, e2 4, e2,5 , e2 ,,) + {e 12,3 , e12 ,4 , e12 5, el 2 ,}.

6. All the current searching-front vertices in SF can be included in the second
stage. Thus the TEMP is updated to contain v3, v4, v., and v6 . The
corresponding updating procedures during the initialization pass of the inner .. .

repeat • loop are:

a. H = {v3 , v4, Y, v8 }, w(3) = w(6) = 45, w(4) = w(5) - 40.

b. EH = {e 3 ,7, e4 ,8 , e, eo. ",

c. SF = (v , v8, v9 . v1O - descendents~v7) = v7 . .

7. v7 can be included in the second stage and thus v., becomes the next -

searching head.

a. H={v7) (w(7) = 70), EH=(e7,8 , e4 ,8 , e5 ,9 , e6. 10}, SF = {v 8 ,).

8. Including v8 violates the maximum stage propagation delay (w(7) + 68 + Dss

140).

a. NI-I = {v}, cutset(3) = {e7.8 , e4 ,,, es, o, e6, 10} {the third stage
latches(L3)}. d(2) = 75.

b. d(2) - w(7) + Dss = 75, EH - EH- IE(v8 1 - {e 9 . e6 10). * "
o) S

S.:-

S..
fS.S

45

9. H =Y {v,}, w(8) - 6(8) + Dsp = 75, SF {v 9 }.

EH = EH + (e,,} --= {es,o, e6,10 , e8,9).

10. w(8) + 69 + Dss - 100 > Lmax. Thus, d(3) = 80 and

cutset(4) -- EH --(e5,, e6,10 , es,9) (the fourth stage latches(L4)}.
NH = {v,}, w(o) = 30, SF = (I)

EH = EH - IE(v,) + OE(vg) = {e6, 10 , e, 10 }.

11. The remaining vertices, v. and v1 0 becomes the fourth stage and are
terminated by the fifth stage latch(LS). d(4) = 40.

Finally, d(5) is determined by the storage propagation delay of LS. The result of the

stage partitioning is shown in Figure 11. The corresponding COM is shown below.

d(1) d(2) d(3) d(4) d(6) dam 85 nsc.
SI -------- I-------I-------I1 ds 290 nsec.

85 75 80 40 10 (nsec.)

4.4.3 Performance Comparison - k-stage vs. Single Stage
As the number of branch executions increases, the efficiency of a multistage system A'

gets worse due to the additional delay through the interstage latches. Also, if the longest

interstage propagation delay (Dmu) is too long, the performance of a multistage may not

be as good as a single stage system since the amount of overlapped execution time may

be very small. Using the execution time equations developed in Sections 4.2 and 4.3, we

must compare the average expected execution speeds of all the possible configurations of

the system. That is, we must compare:

T= In + [I].(nb + 1) . of multistage configurations and

T= n.t'y of a non-overlapped configuration.

where t' is the critical path propagation delay of the NMEGs.cy

46

In addition, we must consider the cost increase. Multistage implementation of a system e:

requires some additional hardware such as interstage latches and a multiphase clock

generator. Routing the multiphase clock signals may cause problems in the same way

that power routing does. .,U

U-

't

.

° ' d

,. .-

,'
.5,i

," ".°.° ', -% %-% o°% .-.
'%,° '.' 'o' '-° ',' '.,'-. %' '.. % , . .° '% -. -. , -. % % ". . - ".j .% '- °.' ". %... ° -. .-

47

5 EXAMPLES ILLUSTRATING STATIC CLOCKING SCHEME
SYNTHESIS

In this chapter, we demonstrate the results of the static clocking scheme synthesis

discussed in the previous chapter. We choose two examples, a microprogrammed CPU,

HP-21.X, and a systolic array. The first example, HIP-21MX, shows how the proposed

technique can be used to complete a partial design. The second example, a systolic

array, shows how an already existing system can be sped-up by virtue of execution

overlap without changing any data or control flow.

5.1 A Microprogrammed CPU

The circuit graph of the HP-21MX CPU is shown in Figure 3. The corresponding

MEGs are shown in Figure 4. Three different results of stage partitionings are shown in

Figure 12. (a) is the original 3-stage configuration used. (b) and (c) show the optimal 3-

stage and 4-stage partitionings determined by the algorithm OPART. As mentioned

before. the algorithm OPART requires an interval enumeration procedure in order to

partition the MEGs for every possible length of the interstage propagation delays.

Currently, we do not have an efficient interval-enumeration algorithm. Instead, we

enumerate the intervals which are possible from the root including the longest module

propagation delay, which takes o(IVl) steps. They are (80, 95, 110, 115, 140, 165, 175,

205, 225, 235). Since the partitioning algorithm KPART computes the actual stage

propagation delays, these intervals are accurate enough to be used by OPART, the

optimal stage partitioning algorithm.

We assume that Dss is 5 nsec. and Dsp is 10 nsec. The 3-stage partition (b) is obtained

when Lmax - 130 nsec. including 15 nsec. total for Dss and Dsp of the stage latches. The

4-stage partition (c) is obtained when Lmax = 110 also including 15 nsec. total for Dss

and Dsp.

The timing values determined by the stage partitionings are listed below. The lengths

(f the clock phases have a certain safety margin, as shown.

% r % %

MA•o
I

48 U

partition (a) (b) (c)

d 165 130 105 nbc.

D (t) 175 140 110 nsoc.

D 176 130 105 nssc.

D2 175 140 85 nDsc.

D3 1f 10 110 neec.

D- - 10 niSc.

Ds 380 280 310 nsec.

ILi I 24 26 60 bits

The corresponding clocking sequences are shown below.

(a) (b) (C)
DI D2 D3 DI D2 D3 DI D2 D3 D4i-------I-------I--I- I-...... -- I I------.I------.I--.....----I:

175 175 10 130 140 10 105 85 110 10

For configurations (a) and (b), there is no resynchronization overhead. For

configuration (c). there may be data contention between two minor cycles, the estore

result (D4)1 of a micro cycle and the "read operand (D2)8 of the next micro cycle, which

requires delay of the next micro cycle retch for one clock period. The branching

overhead of the configurations (a) and (c) 8 is two clock periods. For configuration (b).

the branching overhead is only one clock period since = (Lemnia 2).

We first (,,mpare the original design (a) and our 3-stage partitioning (b). A-s shon in

81 Refer to Figure 12 and Equation (4-3) for the calculation of the branching o.erheads

F Ior all the configuration%. %e a-sume that the length, of the clock pha-e are fixed and no Aait -I- k

,e'rv,d, are added

%o-

%l

1 49

IS2
05 e* I

(a) ?be Original 3 -Stago Configuration

p10

2 s

p L3
L2-

(b) A Diffr-Stage C,.i1.giaretio

Figure 1SaePriinn0fteH.II P
the ~ ~ ~ 2 ci2i5rp fFgr ,tescn tg ltho h rgnldsg stemco

instrctio bufr 2b suulydtrindi dhcfsinan otwdl sdi
mirororame cotole desgn Hoe5 r 10 shw in Tal so.' nces h

coI inr7 iI 2nl 2s lac6bt

is 2 20L
L2 15 54 17 1. 20 0

I 4 4 . * * . . . - . . 4

50 U

The performance comparison of the three configurations is summarized in Table 5.1.

For each configuration, the execution times for 100 micro cycles are computed with

different numbers of branch cycles and resynchronizations. As shown in the table, the

4-stage configuration shows the best performance in general. In the worst cases when

more than hai of the micro cycles either branch or need resynchronization, the

performance of the 4-stage configuration, (c), is worse than that of (b). However, such

cases are unusual. In such cases, we can re-compute the optimal clock period and

corresponding execution time using Lemma 5 to determine whether to use the multistage

scheme or not.

0 of I of Execution time u-sec) Normalized inttiation rate

branches(nb) resynch (a) (b) (c) (al (b) Wd

0 0 17.5 14.0 11.0 1 ':s . ' .

10 0 21.0 I5.4 13.2 0.83 1.14

20 0 24.5 16.8 15.4 0.71 1.04 1.11

40 0 31.5 19.6 19.8 0.56 n.P9 o R

0 SO 17.5 14.0 16.5 1.00 12 1.'

10 40 21.0 I5.4 17.6 0.83 1.14 n

20 30 24.5 16.8 18.7 0.71 1 04 0.01

40 10 31.5 19.6 20.9 0.56 n.P9 I.j

(n-O0)

Table 5.1 Comparison of execution time and initiation rate of b.

three different configurations of the HP-21M CPV.

(a) The original 3-stag. ewfiurmation (Fig. 12-a)

(b) 7t* rwmfigure 3-stagm ofiuratio (Fxi. 12-b)

(c) The 4-stg cofiquration (Pio. 12-c)

.

.-

5.2 A Systolic Array

In this example, we show how an already designed systolic array can be sped-up

without changing the original data and control flow.

The original systolic array design is taken from [311 and shown in Figure 13-(a), which
3

continuously evaluates the function y, = E 6x. .,a.). In the original design, the
j.0 11 J

propagation delays of the registers are assumed to be negligible and we make the same

assumption here. The clock period is 13, which is determined by the critical path b, ",>

6 3 -_> N+I. Each yi is calculated by clocking all the registers R1 through R5 at the

same time.

Figure 13-(b) shows the corresponding MEG. The MEG is rooted at the external input

port xi since each micro cycle reads in the input port and all the constants, a through

a3, are always enabled and remain the same. The desired interstage propagation delay is

chosen to be the same as the longest module propagation delay, which is 7. As shown in

(b), four latches are to be inserted, in between R 3 and "+3" 62 and "+2 6, 63 and 0+1 .

and 6 4 and *+,o as the result of the stage partitioning. The resulting COM after the

stage partitioning is shown in (c). o clocks the original registers R1 through R3. 02

clocks the added stage latches and o3 clocks the original registers R 4 and R, . The

presulting clock period is 7 (D2), which is almost twice as fast as the original design.

The systolic array continuously evaluates the same function every cycle and there are

neither branch nor resynchronization overheads. Accordingly, the throughput rate is
inversely proportional to the clock period. Therefore, the throughput rate is increased

by (13-7)/7 = 85.7 (c)- This throughput rate increase is achieved at the cost of th,,

rour added overlap stage latches.

J..

I

- 's ,. .'. ' ' ' ,,% '."°*.,' % .% % • . .' , ., .\. % .° - *

52U

Yi +3 R5 2 R +1
(PQ)

P 6 P

Q

(P,Q)= 0:P= Q

X1RI 62 63 R2 44 1:P=Q

3 .l

(a) The Original Systolic Array Evaluating F. 6(x.ij'
j-0

--------- Cut Line

..............

(b) The Corresponding MEG and Stage Partitioning .

Figue 1: S3KeParitining(,fa Sstoic rra

53

Yi +3 R5 +2 R4 +1

IN i 61 RI 62 d43 R2 64

(a) The Reconfigured Systolic Array as the Result

I of the Stage Partitioning of Fig.13-(b)

Ft

iD1=6 I D2=7 D3=7

R* .,1-3 R6-9 R4-5

(b) The Clocking Scheme for the Reconfigured Systolic Array

Figure 14: Stage Partitioning Result of the Systolic Array of Fig. 13

54

APPENDIX

I Proofs of Lemma 1 through Lemma 8

Proof :(Lemma 1) To ensure that (i) each stage can have enough time to execute a
given subtask and (ii) there is no collision between micro cycles at any stage, the

following three conditions must always be true:

1. from (i), ,i+(i) > Oi(j) + Di, V ij, I < i < m, (1)

2. from (ii), oi(j+l) 0 4(j), V ij, I < i < m, and (2)

3. also from (ii), om(J+l) 0m(j) + DiM* (3)

By the definition of o1(j)'s, O1(j+l) = O(J) + toy, V ij, I < i < m (4)

By applying conditions (I) and (2) to Equation (4), we get:

o(J+l) = Oi(j) + tcy > i(j) + D, V i,j, 1 < i < m

[Thus, tcy > DV V i, I < i < m (5)

Also, by applying condition (3) to Equation (4), we get o + 0 (j) + Dm -

Thust > Dm (6)
5" t~cy --

By (5) and (6), ty ,> Di, V i, I < i < m. Therefore min(t -- Dma x (Q.E.D.)

U

I

-p. ---, - -- .- ' r#-
€

" -". " . ' """"",*", . """""".". . . ".' '-,. ." % " '--", - - " b . .".".". " .

55 U

Proof :(Lemma 2) The only execution interval affected by the replacement is between

01(j) and #I(j+I). Let TI and T2 be #I(j+l)'s before and after the replacement,

respectively. Then,

TI = ol(j) + tc (7)

Since I' is a branch, T2 > (j) + Dm = 0(j) + Ds (8)

From Equation (8), we get: T2 = 0(J) + [tCY (9)

Therefore, (branching overhead) - T2 - TI =- { -,t . (Q.E.D.)

[icy

Proof: (Theorem 3)

1. Every non-branch micro cycle except the last one is fetched and executed at
the clock rate, tcy.

2. The last micro cycle execution takes .toyIcIltcy
3. By I and 2, an execution sequence of length n with all non-branch executions

is executed in time {[D- + (n-i) }.t (10)

4. By Lemma 2, time overhead caused by replacing ab non-branch executions

with branch executions is Di).[- 0 11 i)I St, C

5. Replacing the last micro cycle, I., with a branch micro cycle does not change
the execution time, since there is no overlapped execution afterwards anyway.

Therefore, the execution time - (10) + (11). or

+= + (n-I))t + n [n + .(nb+l)) t, (QED)r = I + Cn-yl y- .t { d }'o .

:." a.

a..

".++,+.",.,' "+. ;, .,.",', '.,",,' " ,,.,.", ..', . ',,"... • " .,, .') ." ,: "," s+" .".,''..",. ",":," "" "" ", ""'."..r. .: -...:. , ,. +.,.+,,
-: l ++ 'r " ''-:' • u-, +E , " ~ rd +_ , , ,," +_ , + J ., :

56

Proof : (Lemma 4) By Theorem 3,

t(' Tt(T' = nd'(s) + (b + D O (12)

By evaluating the range of each components in Equation (12), we get:

. nb (n-l), nd n- 1-n b > 0

2. nb 0, nb+ 1
:g, DD
.Z 3. 0 < k' <k, D- s > 0

4. fk'1/k' > 1, k' D>

DS DS
By Equation (12) and from I to 4, T(-v-)- Tt(0.

Ds D
Therefore, T(- r)_ Tt(-). (Q.E D.)

i~ DS DS

Proof : (Lemma 5) t > Dmax and, by the definition of p, D < D < S
Cy- mxp max -1fDs DsAccordingly we can partition the range of t into D and t > s

cy max- : cy < andP-
Then

min(7T) = min[min{Tt(tcy)IDmax D tcyS , min{Tt(y)tcy > D
",e Y.. Dm Ds5ty<FTY F

(i) By Lemma 4, min{Tt(tc,)It > DS } T()

(ii) !S < Dm < -." From Theorem 3,
p- max < FoD S D s

" T(t,,y) - nd.tCY + p.(b +).tcy, LS < tcy < D (13)

Equation (13) is a linearly increasing function with the slope (nd + (n + 1)-p) > 0
DS

Thus, man{Tt(tcy)tDmax ,<tcy<--}- Tt(Dma) Therefore, according to (i) and (6'),

DS wDs
Q

min(T) =-- man{Tt(Dmaj) Tt(F-T) }, where p = -I- I (Q 1] 1)

57 U

Proof : (Theorem 6) We prove the theorem by comparing T(Dma) and T ro

Theorem 3, we know that:

Trt(Dmxx) =d max + (nb + l).P.Dmxx and

'p nd'p.-T+ (nb +I).DS

D
T hus, Tt(Dmzx) - Tt -T =Dd (+ (b + l .DmS)[4

Therefore, from Equation (14),

I D
1. if (nb + 1).(D - I) < a then T(Dmzx) - T(-) < 0 and therefore,

Tt(Dmax) < t (-J)
Ds

2if (n b + IDmax -1) nd.{/(p- 1)), then Tt(Dm) Tt(IS)

3 if otherwise. Tt(Dmu) > Tt(--).

(Q.E.D.)

Proof: (Theorem 7) By Theorem 3 and Lemma 4, we know that

T* (tCy)=nd.c, + (nb + 1. ty].ty, t7 _ Dmax (15)

T (tc')-d.t + (nb + . d 116)ad"470o(a Itxy. tcy d! p M(
*D *D *D Ds S DS

min(T)=miniT (Do). T ()
t t1 wer (7

miiTddmdITdS [dst-m = t (dmu.. Tt), where q = I- (181

Then. from Equations (15) and (17).

~. Q

58

D mD

S(Dma) = nd-Dmax + (nb + II. X

d nd.Dmax + (nb + 1) .]*Dmax

>:2 .TD Dmax

:..
T D(L"" D -di]D

t, p. nd-i + (nb + I)-).

> t (-I) (20)

9. d
SCASE 1: If T (dmx) < T (-), then, obviously from Equations (19) and (20) and by

Lemma 5,

T. D(D.%) d d.dzx an
From Equation (19), TD(D)> "Ft (Dma)> Td(dma) and

from Equation (20), TD(-)> T d(-S) > T d(dmax)
-.%

Thus, min(T t) > min(T t)

CASE 2: If T (d max- T d(--), then from Equations (15) and (16),

'Dds ds Ds ds. T , D(-) - d. + (n b + / -(-) .
IqIaq-1 b'oS* I -

ds ds
S.. _ nd.---n + (n + 1).q.-]

.. dS

> ndjT + (nb + l).d s

o~ d dS

> T(

Therefore, if Dmax > dmax, min(7T D) > min(t)is always true. (Q.E.D.

"i

q ,'" " .*' ;... , , . " . , " . . € : " . _ . e , ' ' ' ' ' . .

g . ' f . J ''
' "

,' ' - ' :" -', ", --]-].

Proof: (Lemma 8) 'C

I P(1) I P(2) Pl(K-2) I P(W-1) I P() I
I-...I--I-.I-.. I--I-..../ /-....I I-..IIII--I

I u1 v 1 u2 v(k-2)lu(k-1) vk-1)Iuk vkl
=u (k-2)

C,,

As depicted above, let ui and vi be the left-most and right-most intervals (boundaries)

of i-th partition (for any MEG). By Lemma 1, the minimal length of the longest partition

is Lm * In order to have a smaller k, at least the length of one of the partitions must be

increased and the boundaries be changed. Thus, at least one pair of vi and ufi+1) will

be in the same partition, say Pi (either Pi or P(i+l)). Then,

1. If we move ui+ into Pi' then ui must not remain in Pi in order not to

increase the maximal length of the partition, Lm .Alo, for the same reason,
ui cannot be absorbed into P(i-1) without partitioning P(i-1).

2. Also, for the same reason, going the opposite direction, Pi can only contain,
at most, up to interval v i+1).

Thus the number of stages remains, at least, the same. By repeating the adjustment

according to the rules I and 2 until ul and vk are reached, we can see that the number

of partitions cannot be decreased. Therefore, k is minimal.

(Q.E.D.)

,

4.
% % % % % = .% " - % ". % °. % % • % , • - . '• % % " % ". . - -. -. ". o - - -. .. . - • % , - % "• .

.., •". - ".• ".",' ., % " % - b • . " ".. .% % . . ." . - _% , " " . "-E l

so

References

I1] Agerwala, T.
Microprogram Optimization: A Survey.
IEEE Transactions on Computers C-25(10):962-973, October, 1976.

[2] Aho, A. and Ullman, J.
Principles of Complier Design.
Addison-Wesley, Massachusets, 1977.

[3] Andrews M.
Principles of Firmware Engineering in Microprogram Control.
Computer Science Press, 1980.

[4] Berg, H. K.
A Model of Timing Characteristics in Computer Control.
Euromicro 5, July, 1979.

[5] Boulaye, G. G.
Microprogramming.
John Wiley & Sons, New York, N.Y., 1971.

[6] Breuer,M. (ed.).
Digital System Design Automation, vol.I: Theory and Techniques.
Prentice-Hall, Englewood Cliffs, N.J., 1972.

[7] Chen, T. C.
Introduction to Computer Architecture.
SRA, Chicago, 1975, chapter 9. Overlap and Pipeline Processing.

[8) Cook, P., Chung, H. and Stanley, S.
A Study in the Use of PLA-Based Macros.
Solid-State Circuits SC-14:833-840, October, 1979.

[9] Cotton, L. W.

Circuit Implementation of High-Speed Pipeline Systems.
In Proceedings of FJCC, pages 489-504. AFIPS, 1965.

[10] Darringer, J.
The Description, Simulation and Automatic Implementation of Digital

Computer Processors.
PhD thesis, Department of Electrical Engineering, Carnegie-Mellon University,

May, 1969.

* [11] Dasgupta, S. and Tartar, J.
The identification of maximal parallelism in straight-line microprograms.
IEEE Transactions on Computers C-25(10):986-992, October, 1976.

.lop

61

[121 Davidson, E. et. at.
Effective Control for Pipeined Computers.
[n COMFCON Digest, pages 181-184. 1975.

[131 Dennis, J. B. and Misunas, D.P.

A Preliminary Data Flow Architecture for a Basic Data Flow Processor.
In _9nd Symposium on Computer Architecture, pages 126-132. 1975.

[14! Dervos, D. and Parker, A. C.
A Technique for Automatically Producing Optimized Digital Designs.
In Proceedings of the Nfediterranean Electrotechnical ConferenceAthens, pages

B2.04. IEEE, May, 1983.

[151 Estrin, G.
A methodology for design of digital systems - supported by SARA at the age of

one. .

[n Proceedings of National Computer Conference, pages 313-324. NCC, 1978.

[16) Foulk P. V. and O'Callaghan J.
AiDs - an integrated design system for digital hardware.
In lEE Proceeding Vol.127, No.2. IEE, March, 1980.

[17 Friedman, A.. Menon, P. f
Theory 8 Design of Switching Circuits.
Computer Science Press, Woodland Hills, California, 1975.

[181 Hafer, L.
Automated Data-..emory Synthesis : A Formal Model for the Specification,

Analysis and Design of Register-Transfer Level Digital Logic.
PhD thesis, Dept of Electrical Engineering, Carnegie Mellon University,

Pittsburgh, Pa., May, 1981.

[191 Hafer, L., and Parker, A.
A Formal Method for the Specification, Analysis, and Design of Register-Transfer

Level Digital Logic. . -

IEEE Transactions on Computer-Aided Design CAD-2(1), January, 1983.

[201 Hitchcock, C.Y.
Automated Synthesis of Data Paths.
Master's thesis, Carnegie-Mellon University, 1983.

[211 Horowitz, E. and Sahni, .
Fundamentals of Computer Algorithms.
Computer Science Press, 1978.

[221 [rani,K., McClaia,G.
Optimal Design of Central Processor Data Paths.
Technical Report 58, Systems Engineering Laboratory, University of Michigan,

Ann Arbor, Michigan, May, 1072.

U.-
.. - -. i. *~ 5 *%*%* *% %~~* .* ~ . .- .

62

1231 Kartashev, S. P., Kartashev, S. I. and Vick, C. R.
Designing and Programming Modern Computers and Systems.
Prentice-Hall, 1082, chapter 1. Historic Progress in Architectures for Computers

and Systems.

[241 Katzan, H.
Computer Organization and the System/870.
Van Norstrand Reinhold, 1971.

[251 Keller, R.
Look-Ahead Processors.

Computing Surveys (7), December, 1075.

126] Knapp, D. and Parker, A.
A Data Structure for VLSI Synthesis and Verification.
Technical Report, Digital Integrated Systems Center, Dept. of EE-Systems,

University of Southern California, October, 1083.,"

1271 Kogge, P. M.
The Architecture of Pipelined Computers.
McGraw-Hill, New York, N.Y., 1081.

[281 Lang, D. E., Agerwala, T. K., Chandy, K. M.
A Modeling approach and design tool for pipelined central processors.
In Proceedings of the 6th Annual Symposium on Computer Architecture. IEEE

Computer Society, April, 1979.

[291 Lawson,G.
Design Style Selector, An Automated Computer Program Implementation.
Master's thesis, Dept. of Electrical Engineering, Carnegie-Mellon University,

Pittsburgh, Pa., August, 1978.

[301 Leiserson,C.E., Rose,F.M. and Saxe,J.B.
Digital circuit optimization.
Technical Report, Dept. of Electrical Engineering and Computer Science, M.I.T.,

1982.

131] Leiserson, C. E., Rose, F. M. and Saxe, J. B.
Optimizing synchronous circuitry by retiming.
In Proceedings of Third Caltech Conference on VLSI, pages 23-36. Computer

Science Press, 1983.

(321 McKeeman, W. M.
Introduction to Computer Architecture.
SRA, Chicago, 1975, chapter 7. Stack Computers.

JI

'0% .

% % . % .% % " ' " % % .. . - - - " , ',, • • • . - * * • o "t , . " ° , , . . "
"
%

63

[33] Nagle, A.
Automated Design of Digital-System Control Sequencers from Register-

ATransfer Specifications.
PhD thesis, Carnegie-Mellon University, 1980.

4

[34] Parker, A.C., et al.
The CMU Design Automation System.
In Design Automation Conference Proceedings No. 16. ACM SIGDA, IEEE

Tech. Comm. on Design Automation, June, 1979.

[35] Patterson,D.
STRU".M: Structured Microprogram Development System for Correct Firmware.
IEEE Transactions on Computers c-25(10):974-985, October, 1976.

[36] Ramamoorthy, C. V. and Li H. F.
Pipeline Architecture.

ACM Computing Surveys 0(1):61-102, March, 1977.

[37] Robertson, E.
Microcode Bit Optimization is NP-Complete.
IEEE Transactions on Computers C-28(4):316-319, April, 1979.

[38] Sastry, S. and Parker, A.
The Complexity of Two-Dimensional Compaction of VLSI Layouts.
In Proceedings of the 1982 IEEE International Conference on Circuits and

Computers, pages 402-406. IEEE, September, 1982.

[39] Snow, E.
Automation of Module Set Independent Register Transfer Level Design.
PhD thesis, Dept. of Electrical Engineering, Carnegie-Mellon University,

Pittsburgh, Pa., April, 1978.

[40] Thomas,D.
The Design and Analysis of an Automated Design Style Selector.

PhD thesis, Dept. of Electrical Engineering, Carnegie-Mellon University,
Pittsburgh, Pa., April, 1977.

[41] Zimmermann,G.
The MIMOLA Design System: A Computer Aided Digital Processor Design

Method. 'd

In Proceedings of the 16th Design Automation Conference, pages 53-58. ACM
SIGDA. IEEE Computer Society - DATC, June, 1979.

' 5

ii

_!

4
-4. *4*

4

b

4

S

0

S

S

